
Scrape Documentation
Release 0.1a3

Yarko Tymciurak

October 29, 2015

Contents

1 Overview 3
1.1 Context . 3
1.2 Modes of Operation . 3
1.3 Knowledge You Should Have . 4

1.4 Shell . 4

2 Installation 7

2.1 Installing . 7

3 Tutorials 9
3.1 Introduction to [S]crape . 9
3.2 Developing a Project . 14
3.3 Introduction to [S]crape . 22
3.4 Developing a Project . 22

4 Copyright Notice 25

5 Overview 27

6 Installation 29

7 Tutorials 31

8 Alternatives 33

9 Copyright Notice 35

10 Work in Progress 37

11 Indices and tables 39

i

ii

Scrape Documentation, Release 0.1a3

[S]crape is a tool developed to help researchers extract selective data from web publications. It is particularly useful
for serial web publications which have similar structure over many issues. You interactively develop a selection and
extraction set of commands, and run them across a series of issues, generating output (JSON or CSV).

Contents 1

Scrape Documentation, Release 0.1a3

2 Contents

CHAPTER 1

Overview

1.1 Context

operates within the following environment:

[S]crape plugins

output

scripts

browser shell

1.2 Modes of Operation

You operate [S]crape in one of two ways:

• interactively;

• batch;

[S]crape starts and opens targets through a browser 1, and gets it’s data from that browser.

1 [S]crape uses a Selenium Client Driver to run your browser. At this time [S]crape only supports Firefox.

3

http://seleniumhg.org

Scrape Documentation, Release 0.1a3

You can interactively highlight sections in the browser and scrape will give you unambiguous code to select that data.
As with a Google search, skill will help make the search term (xpath or css selector) more general, yet specific enough
to return your desired result.

Inspect results as you work interactively until you are satisfied and then save a range of commands from your history
to develop your script.

At anytime you can load and run scripts against an opened target. Thus you build up a complete script incrementally.
In batch mode, you can automatically run it over a pattern or list of targets.

You can test your scripts interactively in headless mode (that is, without a browser). You can also run batch either with
a browser, or headless.

1.3 Knowledge You Should Have

You should have a general understanding of HTML and CSS structure and form. You don’t need to know much, but
you should be able to understand and recognize what you are looking at when looking at small portions of web page
source, and have an understanding of what type of thing you are trying to extract, i.e. path, attribute, or text.

You will need some basic understanding of XPATH syntax and CSS Selectors as you will be using these to describe
what you are looking for. When manually highlighting something in your browser, [S]crape will return an XPATH.
Often a CSS selector is both shorter and more accurately selective. [S]crape allows you to view context near your
selection. This makes it easy to pick a different form of selector and test it before saving it to your script.

1.4 Shell

In interactive use, [S]crape is similar to a typical command shell, such as sh or bash, or cmd on Windows. In
command interpreters, there are typically built-in commands and a way to execute external commands. Shells also
provide variables, and some sort of program control.

[S]crape has a rich set of built-in commands, and allows calling external commands through your system’s shell. You
can also add built-in commands by writing extensions to [S]crape in Python (plugins).

Since [S]crape outputs tables 2, variable names are like table column names. This means every variable in [S]crape is a
list (you can think of them as arrays), and every table an associative array of variables. In fact, you can save the result
of your [S]crape as either csv, json or yaml. There are other important kinds of variables in [S]crape.

vars Output variables are the normal variables, and are used to specify output table column names.

local Local variables are similar to output variables, only they are omitted from tables. These are used
for intermediate results. Local variables have scope per output table.

global These variables persist across output table changes.

[S]crape is least like shells in that there is no familiar loop control. This simplifies traversing an HTML tree and extract-
ing data. Instead of looping, you traverse to locations in the XPATH tree of the input file. We refer to selected (current)
XPATH locations as nodes. Typical [S]crape operation involves traversing a document’s tree, extracting selected content
from those nodes, and repeating. In place of program control, you control which nodes you search from. Multiple
nodes can be active (for example all the list items of some part of the document), so scripts tend to be rather short.
Some general control mechanisms [S]crape provides are:

2 [S]crape was initially designed to output CSV, but this is a bit too restricting. For one thing, to change the view of the data (the order of way the
data is populated into columns, the number and contents of tables) one would need to re-scrape the source. This is why you have a choice of saving
variables as JSON or YAML also. Then, you could rebuild, re-shape your tables from your saved data source.

4 Chapter 1. Overview

http://www.w3schools.com/xpath/xpath_syntax.asp
http://www.w3schools.com/cssref/css_selectors.asp

Scrape Documentation, Release 0.1a3

root Normally, navigation through the document is incremental. This sets the root of the tree to the
starting <html> tag. When the root of the document tree is set, it’s children are the active children,
so in this case, normally <head> and <body> tags will be current starting nodes.

body This resets the root node to the <body> tag.

grab [S]crape opens a browser when it starts, and communicates with it. grab gets a highlited region
from your browser, giving you an xpath to it.

A majority of [S]crape commands involve selecting a node using an xpath selector, a css-selector, or a combination of
path and text search. The remaining commands deal with interactive use (history, view variables, run scripts, save or
load scripts), and outputing results (tables).

1.4. Shell 5

Scrape Documentation, Release 0.1a3

6 Chapter 1. Overview

CHAPTER 2

Installation

requires the following:

• a recent version of python 2.7

• a recent version of Firefox 1

Installing [S]crape will install or upgrade the following python libraries:

• argparse

• lxml

• cssselect

• PyYAML

• selenium

• [S]crape‘s version of envoy

• a [S]crape plugin library

Installation requires you have a compiler on your machine.

For Linux systems, this should already be the case.

For Macintosh OS/X systems, downloaded Xcode free from the Mac App Store (also install the command line tools).
Alternatively, you may be able to install just the command-line tools (see https://github.com/kennethreitz/osx-gcc-
installer - we have not tried this).

For Windows platforms, this is not a straightforward process. See the MS Windows section at
http://lxml.de/installation.html.

2.1 Installing

1 Firefox is the only browser officially supported for [S]crape. As an alternative, you may try a current version of Chrome, but note that you will
need to download a chrome-webdriver. For some combinations of versions of Chrome, chrome-webdriver and selenium, timeouts didn’t properly
work. For some medical journal sites with continuous stream advertising, Chrome would not respond (would never return when called from scrape).

7

http://python.org/download/releases/
http://www.mozilla.org/firefox
https://itunes.apple.com/us/app/xcode/id497799835
https://github.com/kennethreitz/osx-gcc-installer
https://github.com/kennethreitz/osx-gcc-installer
http://lxml.de/installation.html
http://www.google.com/chrome
https://code.google.com/p/chromedriver/

Scrape Documentation, Release 0.1a3

Prerequisites:

• python 2.7
• a recent version of Firefox

Recommended:
• virtualenv
• pip

I suggest you use python’s virtualenv, particularly your first time with [S]crape (see virtualenv).

This will ensure you have an isolated, clean python install of [S]crape to start. Once you have this working, you may
consider installing this your system’s python site-libraries.

To properly use virtualenv, you’ll need pip. Ensure you have pip installed:

$ which pip

If you don’t have pip installed, then install it:

$ easy_install pip

If you do have pip, be sure it’s up-to-date:

$ pip install --upgrade pip

Todo
Have yet to debug the scrape.gz install file (installation does not mirror setup.py).

Now, install the current version of [S]crape. Currently, you must do this from sources. Clone a copy of [S]crape and run
setup.py:

$ hg clone ssh://hg@bitbucket.org/yarko/scrape
$ cd scrape
$ python setup.py install

8 Chapter 2. Installation

http://python.org/download/releases/
http://www.mozilla.org/firefox
https://pypi.python.org/pypi/virtualenv
http://www.pip-installer.org/
https://pypi.python.org/pypi/virtualenv

CHAPTER 3

Tutorials

Select the tutorials which are appropriate for what you want to do.

To start, I recommend you follow the installation checkout and tutorial on this page, followed by the example PyCon
project. These brief tutorials will introduce the concepts and strategies for using scrape, as well as give an overview
of some of the most useful commands.

Getting Started

First Project

3.1 Introduction to [S]crape

3.1.1 Getting Started

Overview

Introduction

We’ll start by making sure you have [S]crape installed.

To start, I’ll assume you have installed [S]crape in a virtualenv.

Activate the virtual environment where you have installed [S]crape, and run scrape:

$ scrape http://scrape.readthedocs.org

This should start [S]crape and open its documentation in Firefox 1.

1 Be sure you’ve installed [S]crape and a current Firefox browser.

9

https://pypi.python.org/pypi/virtualenv

Scrape Documentation, Release 0.1a3

• your Firefox should have “WebDriver” displayed in the lower-right;

– this indicates that this Firefox is being controlled from [S]crape.

• you should see a log of the plugins registered (scrape comes distributed with one -
affiliations);

– if you don’t see scrape: INFO - ...registering plugins: in your [S]crape

shell, then likely something is incomplete in your installation. You can continue with the exer-
cises, but you will need to install plugins when you need them.

At the [S]crape >>> prompt type the following:

[S]crape >>> help

[S]crape gives you access to an HTML file or web page. It does this by parsing your web page into a tree of HTML
nodes. You then traverse the tree of nodes, scraping the information you want from a selected nodes.

[S]crape starts by setting the root node of your HTML page 2 to the <html> node.

Let’s show the contents of the current node:

2 You can easily set to the root of the document at any time to either the entire document, or the body - see help doc and help body.

10 Chapter 3. Tutorials

Scrape Documentation, Release 0.1a3

[S]crape >>> show node

You should see the source for the two subnodes (children) of the <html> tag, the <head> and <body> tags of the
[S]crape document page. This is the content of the document, rooted at html 3.

Just to confirm, lets count the current number of selected nodes:

[S]crape >>> nodes

When you will be looking at larger, more verbose selections, it can also be helpful to review just the tags of the selected
nodes:

[S]crape >>> tags

The general starategy for using [S]crape is:

• select a scrape target (a web page);

• declare a table name (which will hold a set of variables);

• navigate the web page’s tree;

• declare a variable to collect information;

• capture the desired information;

• repeat as desired;

• save a table to a file;

• lastly, save your interactive commands to a script to run later.

When looking a [S]crape target, it’s useful to also open the source view. When you are starting with a new page, you
can easily search the various tags and attributes of the html elements.

Do that now - right-click on your webpage, and select View Page Source.

For this tutorial, we’ll save the headers to develop an outline for this page.

The outline we’d like to make consists of the headers, Contents:, Alternatives, and so forth. In your source
window, search for Contents:.

3 Note that when you look at an empty page (about:blank), scrape will create a minimal parse tree for you
(<html><head/><body/></head>).

3.1. Introduction to [S]crape 11

Scrape Documentation, Release 0.1a3

Contents: is in an <h2> tag, as is Alternatives; this looks like a reasonable target for our scrape.

[S]crape provides a simplified interface to the libxml2 library, so that most of the information you will find about xpath
selectors and cssselectors will work as you expect. [S]crape also combines, extends and adds other commands for
interactive use. For example, find_by_text will search nodes selected by an xpath expression for a string.

You might like view http://www.w3schools.com/xpath/xpath_syntax.asp for reference during this tutorial.

Let’s find the subheadings on our target page to see if this will give us the page outline we’d like:

[S]crape >>> findall .//h2
[S]crape >>> show node

This should find all the <H2> nodes under the current node. More than one node is found - show displays all of the
currently selected nodes.

There are four active nodes, as verified by:

[S]crape >>> nodes

The text of these nodes seems like it would serve nicely as an outline, so lets capture those.

First, declare a table name and a variable to collect output (if you don’t declare a table name, the default is
scrape_table). Setting var my_name will select a variable to collect data. The variable does not need to

12 Chapter 3. Tutorials

http://www.w3schools.com/xpath/xpath_syntax.asp

Scrape Documentation, Release 0.1a3

exist (it will be created). If you change tables before you’ve saved their output, they are stored so you can later add to
their variables (and output).

[S]crape >>> table outline
[S]crape >>> var topics

When you save the output from this table, it will be saved in a file outline.csv. You can also save the output as
json or yaml. Once you save a table, its values are emptied. So far, this table has one column - one variable.

To see what the various variables of a table currently have, we issue the show out command to show pending output
(the current table’s contents). [S]crape variables are lists of values. Varible names are shown with a colon (my_var:),
and their values are shown preceded by a ‘-‘.

The text command will collect text contents of the currently selected HTML nodes into the current variable.

[S]crape >>> show out
[S]crape >>> text
[S]crape >>> show out

There was no output pending prior to the text command. If you wanted to save this now, the table command
(with no argument) will output the current table to a csv file with the same name (if one already exsits, it will not be
overwritten; the name will be numerically extended).

If you want to save your script for later, look at your history. Only scrape commands which act on pages are saved in
history. You can choose which parts of history you save to a script file.

[S]crape >>> history
[S]crape >>> help save

If you’d like, save your script now. You can edit saved [S]crape scripts with a text editor. You can add comments, which
begin with ‘#’ and extend to the end of the line.

There is an alternate form for selecting tables and variables, which may help the commands in your script (and what
they apply to) stand out. If you’d like, in place of:

table outline
var topics

you can equivalently write:

3.1. Introduction to [S]crape 13

Scrape Documentation, Release 0.1a3

[outline]
< topics >

To exit [S]crape, see help EOF.

After our brief interactive session with [S]crape, here’s what our script looks like:

##
[S]crape script to get outline of a page
#
- gets the text of <h2> headings;
#
[outline]
< topics >
findall .//h2
text
table # save outline.csv

Summary

In this introductory tutorial, we’ve

• shown one way to select nodes;

• defined tables and variables;

• saved selected content;

• saved a [S]crape script;

Please continue with the next tutorial.

Happy ing!

3.2 Developing a Project

This is the second tutorial in a series.

From the introductory tutorial, we saw how to select a destination (file or URL). Initially, it’s also beneficial to view
the destination’s source along with the browser window. You can either search for what interests you in the source
window, or use inspect element to get to the item that interests you.

Once you’ve quickly found the item of interest, you can start trying various tree traversal commands to get to related
items in [S]crape, view the nodes found, and save some part of their content in [S]crape variables for output. You can
also save your script activity into a script, which you can edit and run later in [S]crape.

In this tutorial we’ll see how to backtrack and make corrections. We’ll also see how the various [S]crape commands
behave when applied to multiple nodes.

Note: A word about [S]crape ing public sites:

Be a Good Citizen!

• avoid repeatedly hitting a site, and loading its servers;

14 Chapter 3. Tutorials

Scrape Documentation, Release 0.1a3

• always check for copyright, and observe fair use doctrines.

3.2.1 PyCon Volunteer Reporting

Here’s our project: the US PyCon 2013 Conference is coming up. PyCon is a community conference and depends
heavily on voluneers. We want to track how many volunteers we still need for session staff 4.

The conference site lists the sessions and staff on http://us.pycon.org/2013/schedule/sessions. Since this will likely
change dynamically, we’ll use a snapshot version we saved, just as you would when first developing a script (in order
to spare repeatedly hitting a site’s servers). Having a static copy will also make it easier to follow along with the
tutorial (also, after the conference, there will be no unfulfilled needs, so the web data won’t be as interesting):

• download tutorial2.zip.

3.2.2 Getting Oriented with [S]crape Commands

Let’s review what we’ve learned so far.

When you open [S]crape with a URL, [S]crape opens the url in a browser and parses it into a tree of nodes held in scrape.
These nodes are what you navigate. Using xpath and cssselect you select nodes and extract data.

The ability to inspect aspects during the process is useful, as well as being able to run scripts in batch.

In this tutorial we’ll introduce some of the rhyme and reason behind [S]crape. Since [S]crape has over 60 commands,
let’s start by describing some structure around the commands (we will only introduce some of them in this tutorial).

[S]crape plugins

output

scripts

browser shell

[S]crape commands affect each of these areas. Most of the action happens in the hub - in [S]crape itself. The type of
commands in [S]crape are:

• navigation

• content extraction (capturing)

• interaction

• settings

4 Session staff consist of chairs and runners. Chairs introduce speakers, manage questions and keep track of time. Runners get speakers to their
talk on time and ensure they have everything they need. A typical session consists of 3 talks. Sessions run simultaneously in multiple rooms.

3.2. Developing a Project 15

http://us.pycon.org/2013/schedule/sessions

Scrape Documentation, Release 0.1a3

• variables

3.2.3 A Starting Strategy

The first time you open a target URL it can be useful to open the page’s source from the browser (I have them side-by-
side at first).

To open the page source

right-click in the browser page:

For smaller pages, it can be useful to search in the source for what interested you in the browser. For larger pages, it
can sometimes be easier to simply highlight what interests you in the web page, and use the [S]crape grab command
to give you a small context. From there, it can be easier to search for the larger context in the source window, so you
can get a good view of the context around your interest.

Let’s do that now. Unzip the tutorial file (I’ve replaced the >1M in images with a single pixel gif to keep things
manageable). You should have a file sessions.html and a directory sessions_files. Assuming you’ve
unzipped in the current directory run scrape:

$ scrape sessions.html

To orient ourselves, use a few of the interaction commands from the Introductory Tutorial:

[S]crape >>> nodes
2
[S]crape >>> tags
['head', 'body']
[S]crape >>>

In this case, we are not concerned with any of the meta-data which might be in the <head/>:

[S]crape >>> body
[S]crape >>> nodes
7
[S]crape >>> tags

16 Chapter 3. Tutorials

Scrape Documentation, Release 0.1a3

['header', 'div', 'script', 'script', 'script', 'script', 'div']
[S]crape >>>

Looking at our browser window, the sessions are named and listed as visual blocks. Here are the parts interesting for
our task:

Scrolling to the bottom of the browser page, we see there are 42 sessions. We can see that each session has a Session
Chair and a Session Runner. If no one has signed up, the page shows: No volunteers signed up. We
need a total of 84 volunteers. We’ll need to gather information after the session name (e.g. Session #1).

Unfortunately, there’s a lot of HTML code for headers, sponsors, and so forth - but let’s go to our browser’s source
window and search for Sessions. It looks like our info is all contained in an HTML list.

3.2. Developing a Project 17

Scrape Documentation, Release 0.1a3

Let’s just start by seeing what happens when we try to get the list of sessions. If we try findclass:

[S]crape >>> findclass unstyled
[S]crape >>> nodes
43
[S]crape >>>

It looks like we might have gotten the 42 session (their content looks to be held in <ul class="unstyled">
lists), and the outermost list holding them. You can look at what was selected with show node, but it’s a little easier
to digest at this point in the browser-source window. This is close to what we wanted, but not quite.

3.2.4 Adjusting Course

If you use further [S]crape navigation commands (such as findclass), they will act from each of the currently selected
nodes. We’re not where we want to be, so let’s back up:

[S]crape >>> body

Some smaller ways you can back up in the tree:

• doc, or root (aliases)

• getprevious

18 Chapter 3. Tutorials

Scrape Documentation, Release 0.1a3

• getparent

See the help for these, and experiment with them.

Now, let’s try a couple of other commands to see if you can get to the 42 nodes of interest (look for hints in the
browser-source view). Here are a few examples (I’ll omit the output, so be sure to follow along at your computer):

[S]crape >>> flindclass unstyled
[S]crape >>> nodes
[S]crape >>> tags
[S]crape >>> body
[S]crape >>> help cssselect
[S]crape >>> cssselect div.box-content ul.unstyled
[S]crape >>> nodes
[S]crape >>> tags

There are a couple of ways to get to what we want (you may find others). Cssselectors are easy to write and powerful.
Xpath expressions are explicit and functional (if you learn xpath expressions, you can take advantage of that knowledge
for navigating XML documents also).

I find that either cssselect h1+ul.unstyled or find .//ul[@class=’unstyled’] work. The css
expression says:

get all the elements ul which immediately follow an h1, and which have class unstyled.

The xpath expression says:

get the next (single) ul node with class unstyled.

The .//tag_name form says look anywhere (any depth) under the current node.

I prefer the xpath expression - for this case, it seems more suitable, closer to what we intend.

[S]crape >>> body
[S]crape >>> find .//ul[@class="unstyled"]
[S]crape >>> nodes
[S]crape >>> show node

This looks like the spot we were interested in, in the browser-source.

3.2.5 Saving Output

So that we can have context, let’s collect the session name. Let’s also scrape the text of the first ul under that - the
session volunteers. I want to have 42 names, and 42 pieces of volunteer information. Thus we can determine which
sessions have needs. The first ul under each session name will do this for us. First, lets try to select the sessions.
From the last show command, we can see Session #42.

[S]crape >>> findall ./li
[S]crape >>> nodes
[S]crape >>> show

Note that findall has a single ’/’ - this will find only direct children of our current ul node.

Now lets get our session names:

[S]crape >>> find ./a
[S]crape >>> nodes
[S]crape >>> show

We use find (not findall) because we only want the first a tag under each of our 42 nodes.

3.2. Developing a Project 19

Scrape Documentation, Release 0.1a3

This time, the show command is a joy to look at - it’s clear that we have the session names, that our 42 nodes are
indeed exactly what we want. The text of these nodes contain the session names we want. We’re ready to setup some
variables:

[S]crape >>> [sessions_table]
[S]crape >>> <session>
[S]crape >>> text
[S]crape >>> show out

We have our 42 session names waiting to be output. But still we need to add information about the volunteer status of
each.

Thankfully, we have the browser-source window to refer to. We can see that after the <a> containing our session
names we want the ul nodes which are the first children of the div tag following li.

The getnext command will get the next sibling node (the div we want). From there we will get the ul directly under:

[S]crape >>> getnext
[S]crape >>> nodes # confirm
[S]crape >>> show
[S]crape >>> find ./ul
[S]crape >>> nodes # still looks good

Where text will get the text inside the tag (up to the next child tag), text_content will get all the text inside a tag, even
that inside other enclosed nodes. We’re ready to save the status of the volunteers - we’ll put this in a volunteer variable.

[S]crape >>> <volunteer>
[S]crape >>> text_content
[S]crape >>> show out

There is a good deal of white space, but we’ll easily deal with that outside of scrape. I think the form of show out
(yaml) would be easy to read into a python script which will do the counting.

[S]crape >>> yaml sessions.yaml

You could have also saved this as either json or csv (the latter using the table command). Either json or yaml is
convenient for loading into python data structures. I chose yaml because it is easy on the eyes when viewing the
scraped data file.

3.2.6 Running Another Day

We’ll need to run this script quite often to keep the current volunteer needs up to date, so we’ll need to save our script.

Have a look at your history:

[S]crape >>> history

Notice that history shows your navigation commands, but not your interactive insepction commands. Scripts are saved
from this command history, so inspection commands are not stored there.

You could edit your script file (comments start with ’#’), and eliminate any false starts, and test the edited result, or
you could select which part of your history to save, and go from there. You decide:

[S]crape >>> help save
[S]crape >>> save sessions.scrape

Before you exit [S]crape, edit your file, and test it by running it against the current page (I use the gvim editor; you
should use your favorite):

20 Chapter 3. Tutorials

Scrape Documentation, Release 0.1a3

[S]crape >>> clear volunteers session # clear variables
[S]crape >>> show out # should now have no output pending
[S]crape >>> load sessions.scrape
[S]crape >>> show out

Loading a script runs it against the current document tree.

You can run your script in headless mode:

$ scrape -H -s sessions.scrape http://us.pycon.org/2013/schedule/sessions

I leave it to you to develop a script to count and report on volunteer needs, based on sessions.yaml. Mine was under
12 lines of python. Whatever you use for postprocessing, you can also run it from your sessions.scrape by adding
something like this to the bottom of your script:

after saving your yaml / json / csv file:
!python my_script.py sessions.yaml

3.2.7 Summary

After this exercise, your script should look similar:

Count volunteer signups for PyCon Sessions
#
open http://us.pycon.org/2013/schedule/sessions/
#
body
I save to a different name than this table, which would be default;
[s_table]
find .//ul[@class='unstyled']
findall ./li
find ./a
<session> # column1: the session name
text
getnext
find ./ul
<txt> # column2: who's signed up to staff the session;
text_content
yaml sessions
!python session_volunteer_counter.py sessions.yaml

Let’s look at which commands in [S]crape we used:

• navigation:

– body

– cssselect

– find

– findall

– findclass

– getnext

• capturing:

– text

3.2. Developing a Project 21

Scrape Documentation, Release 0.1a3

– text_content

• interaction:

– help

– history

– nodes

– show

– show out

– tags

• settings:

– headless (-H)

• variables:

– clear

– “[...]”, or table

– “<...>”, or var

• output:

– yaml

• scripts:

– load

– save

• shell:

– ”!”, or shell

Happy ing!

3.3 Introduction to [S]crape

The “Getting Started” Tutorial will help you confirm your installation, and introduce the basic

concepts.

3.4 Developing a Project

In this Intermediate Tutorial, we’ll look at using to report on volun-
teers signed up for running talks at a national conference. In the process, will look at the different groups

22 Chapter 3. Tutorials

Scrape Documentation, Release 0.1a3

of commands in and introduce some useful patterns for developing
scripts.

3.4. Developing a Project 23

Scrape Documentation, Release 0.1a3

24 Chapter 3. Tutorials

CHAPTER 4

Copyright Notice

Copyright (c) 2013, The University of Chicago. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of The University of Chicago nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

25

Scrape Documentation, Release 0.1a3

26 Chapter 4. Copyright Notice

CHAPTER 5

Overview

What’s involved, required knowledge, and the basic modes of operation.

27

Scrape Documentation, Release 0.1a3

28 Chapter 5. Overview

CHAPTER 6

Installation

Software and browser requirements.

29

Scrape Documentation, Release 0.1a3

30 Chapter 6. Installation

CHAPTER 7

Tutorials

Get started with a concrete examples.

31

Scrape Documentation, Release 0.1a3

32 Chapter 7. Tutorials

CHAPTER 8

Alternatives

Examples of just some of the alternatives to [S]crape include:

• scrapy

• twill

• dryscrape

• django-dynamic-scraper

You can also look through the notable tools section on Wikipedia.

Many of these are either not interactive, or are programmers libraries or toolkits. [S]crape is an interactive script
development tool which, with a modicum of knowledge, is both powerful and simple. [S]crape scripts use [S]crape

commands, shell commands, and commands provided by extensions.

33

http://doc.scrapy.org
http://twill.idyll.org
http://dryscrape.readthedocs.org
http://django-dynamic-scraper.readthedocs.org
http://www.wikipedia.org/wiki/Web_scraping

Scrape Documentation, Release 0.1a3

34 Chapter 8. Alternatives

CHAPTER 9

Copyright Notice

This license applies to the program, , and its documentation.

35

Scrape Documentation, Release 0.1a3

36 Chapter 9. Copyright Notice

CHAPTER 10

Work in Progress

This document is currently a work-in-progress. Here are a list of known items left to do:

Todo
Have yet to debug the scrape.gz install file (installation does not mirror setup.py).

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/scrape/checkouts/latest/source/installation.rst,
line 92.)

37

Scrape Documentation, Release 0.1a3

38 Chapter 10. Work in Progress

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

39

	scrapelogo2.png Overview
	Context
	Modes of Operation
	Knowledge You Should Have
	scrapelogo2.png Shell

	scrapelogo2.png Installation
	Installing scrapelogo2.png

	Tutorials
	Introduction to [S]crape
	Developing a Project
	Introduction to [S]crape
	Developing a Project

	Copyright Notice
	Overview
	Installation
	Tutorials
	Alternatives
	Copyright Notice
	Work in Progress
	Indices and tables

